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ABSTRACT 

A detailed  description is presented of the  behavior of 

a sonic boom shock  wave  near  the  sonic  cutoff  altitude,  at 

this  altitude  the  local  sound  speed is equal  to  the  aircraft  

speed.  The  analysis  being  based  on a model  atmosphere  in 

which  sound  decreases  l inearly  with  alt i tude.  It is shown 

that  existing  theories  using  geometrical   acoustic  ray  tube 

concepts  do  not  correctlydescribe  the  si tuation  near  cutoff.  

As the  shock  f irst   propagates  away  from  the  aircraft   i ts  

strength  decreases.   However,  as i t   approaches a region 

where  the  flow  behind  the  shock is transonic  the  pressure 

jump  across   the  shock  increases ,   despi te   the  fact   that   the  

Machnumber is decreasing.   The  pressure  jumpincrease is 

ca'used  by accumulated  disturbances  behind  the  shock  which 

are  unable  to  propagate  away  in  this  transonic  f low  region. 

When the  flow  behind  the  shock is fully  subsonic  the  pres- 

sure   jump aga in  decrcrise,  the  shock  finally  ending,  at  zero 

strength,   embedded  in a compression  wave. A very   in te r -  

esting  result  is that  in  the  vicinity of the altitude  at  which 

the  shock  disappears ,   compression  s ignals   f rom  the  a i rcraf t  

a r r ive   ahead  of the bow wave. 
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CHAPTER I 

INTRODUCTION 

The  purpose of this  study is to  determine  the  behavior of the 

sonic  boom  shock  wave  when  it  arrives  in  the  neighborhood of the  sonic 

cutoff altitude.  At  this  altitude  the  local  sound  speed is equal  to  the 

ai rcraf t   speed.   This   occurs   below  the  a i rcraf t   for   low  supersonic   Mach 

number ( 1  < M < 1.2)  flights;  and is due to  the  fact  that  sound  speed  de- 

c r e a s e s  by  about 20  percent  with  increasing  altitude  over a range of 0 to  

50, 000 f t .  

The  approach  used  here  depends  strongly  on  acoustical  concepts 

for  the  following  reasons: 

( 1 )  The  nonlinear  theory  developed  by  Whitham  (Refs. 1 , 2 )  i s ,  for  

the most part,  inapplicable  for  describing  details of the present  problem 

(this  wili be discussed  in  the  body of the  report) .  

( 2 )  Many of the  mathematical  equations  describing  the  location 

and  properties of the  disturbance  wave  fronts  can be given  explicitly  for 

the  case  in  which  sound  speed  varies  l inearly  with  alt i tude  (Refs.  3 ,  5.). 

Furthermore,   th is   model  of the atmosphere  gives  an  accurate  description 

of a standard  atmosphere  and  i t   also  permits  an  adequate  description of 

all relevant  physical  phenomena. 

( 3 )  The  boom is quite  weak  in  the  regions  considered,  having a 
pressure   ra t io ,   Ap/p ,  of o rde r  . 001 .  Therefore   i t  is sl ightly  more  than 

a sound  wave. 

( 4 )  It is quite  important  to  give  the  shape of the  shock  wave  and its 

location  relative  to  the  ambient  atmosphere.   Satisfactory  results  have  been 

obtained  for  shock  location  techniques  (Refs. 3 , 4 ,  5 )  which are   based   e i ther  

on acoust ical   ray  or   wave  f ront   t racing.  

We shall   assume  in  the  remainder of this  report  that  the  boom  was 

caused by an  a i rcraf t   in   s t ra ight   horizontal   f l ight ,   and  that   the   sound  speed 

decreases  l inearly  with  increasing  alt i tude  between  the  ground  and 35, 000 ft. 
In addition,  the  effects of winds are   neglected.  
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As a shock  wave  propagates  through a Ifstandard' '   atmosphere it 
goes  through  various  phases  depending  on  its  inclination  and  the  incoming 

flow  Mach  number, If we  locate a reference  coordinate  system  on  the 

shock we notice  that  the  incoming  flow  has a constant  velocity,  equal  to 

the  aircraft  velocity,  but a Mach  number  which  decreases  with  decreasing 

altitude. As we move down the  shock,  toward  the  ground, it becomes 

vertical   near  the  sonic  alt i tude.  We define  the  initial  phase,  Region 1 of 

Fig.  1,  to  be  where  the  flows  both  ahead of and  behind  the  shock a r e   s u p e r -  

sonic.   Here,   except  very  near  the  bottom  end of Region 1 , the  theories 

developed  by  Whitham,  Refs. 1 ,  2 ,  and  extended  in  Ref. 4 are   appl icable .  

In Region 2 (Fig.   1)   there   is   supersonic   f low  upstream of the  shock  and 

subsonic  flow  downstream.  Here  again,  except  in  the  vicinity of  the 

boundary  between  Regions 1 and 2 ,  the  theory of Ref. 4 is applicable. 

Therefore  the  theory of Ref. 4 gives  an  adequate  description of the  shock 

strength  except  for  those  si tuations  when  the  f low  behind  the  shock is near  

sonic. In Region 3 (Fig.  1 )  there  is  no  shock.  It  will be shown  that  here 

there  is only a s e r i e s  of compression  waves  s imilar   to   those  occurr ing 

below a subsonic   a i rcraf t .  

Of interest   in  these  considerations is the  pressure  ra t io ,   Ap/p,  

a c r o s s  the  shock. As we move down through  Region 1 the pressure   ra t io  

decreases  as predicted  in  Refs.  1 , 2 , 4 .  However ,   very  near  the  end of 

Region 1 the   pressure  ra t io   s tar ts   to   increase,   despi te   the  fact   that  

the  incoming  flow  Mach  number is decreasing.  This  behavior is not p re -  

dicted  in  Refs. 1,  2,4; it is ,  however,   indicated  in  an  analysis by  Moeckel 

in  Ref. 6.  A technique  similar  to,   but  simpler  than,  Moeckel 's  is developed 

later  in  this  report .   Lighthil l ,   Ref.  7 page 3 1 7 ,  also  mentions  (without 

proof)   that   the   pressure  ra t io   increases  as the  shock  approaches  the  tran- 

sonic  (behind  the  shock)  region.  This  pressure  increase is caused  by  two 

complimentary  phenomena.  First   there is a focusing of the  wave  energy 

emitted  by  the  aircraft;  one can  see  in  Fig.  2 that   many  pressure  wave 

fronts   s imultaneously  arr ive  in   this   region.   Second,   in   the  t ransonic  

region  behind  the  shock  both  the  characteristics  and  the  shock  itself  are 

near ly   ver t ical .   Therefore   pressure  dis turbances  created by the  shock 

propagate  upward  and  downward, all remaining  in  the  immediate  vicinity of the 
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shock.  These  tend  to  accumulate  and  give  rise  to  higher  than  expected 

overpressures .  

In Region 2,  where  the  flow  behind  the  shock is subsonic,  the 

complete  flow  field  ahead of and  behind  the  shock is quite  complicated. 

The  major  cause  for  this  complication is the  fact  that  in  the  lower  part 

of this  region  disturbances,   caused by the  aircraft ,   arrive  before  the 

bow  wave;  i .e.,   there is a compression  f ield  in  front of the  bow  shock. 

However,  since  the  shock is formed  (or  ends,  depending  upon  how you 

consider  the  situation)  in  this  compression  field its strength  here is 

quite small, tending  to  zero.  The  overall  pressure  increase  here is due 

to  the  combination  shock  plus  pressure  field. 

Below  Region 2,  in  Region 3 ,  the  flow is everywhere  subsonic. 

Here  there   is  no abrupt   pressure  increase  and  hence no boonl,  the  pres- 

s u r e  is sp read  out  into a continuous  rise. What is experienced  in  this 

region is a loud  rumble  such  as  would  be  caused  by a subsonic  aircraft .  

In Chapter I1 relevant  acoustical  equations  and a description of 

the  flow  field,  based  on  these  equations, is presented. It is shown  how 

the  subsonic  flow of Region 3 (F ig .   1 )  is connected  with  the  supersonic 

flow at   h igher   a l t i tudes.  In Chapter I11 a theory  paralleling  that  of 

Moeckel  (Ref. 6 )  is presented. We show  here  that  the  pressure  jump 

across  the  shock  can  increase  while  the  shock  Mach  number  decreases. 

In Chapter IV some  extensions  to  the  acoustical  theory  are  given. 

Finally,  in  Chapter V the  resul ts   are   reviewed,   and  the  la teral   propaga-  

tion  problem is discussed. 

I 
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CHAPTER I1 

CHARACTERISTICS, WAVE FRONTS AND  RAYS 

11.1 ACOUSTIC WAVE FRONTS AND RAYS 

It is shown  in  Appendix A ,  Eq. (AB),  that   characterist ic  surfaces 

for  unsteady  Eulerian  flow  equations  satisfy  the  partial  differential 

equation 

= o  (11.1 ) 

We will now  show that  this is a l s o  the  equation  for  the  acoustic  wave  fronts, 

and  therefore   that   the   acoust ic   wave  f ronts   are   character is t ic   surfaces .  

We will   also  show  that  for  steady  supersonic  f lows  Eq. (11.1) can  be  reduced 

to  the  equation  for  the  Mach  l ines.   This  relation  between  the  acoustic 

wave  fronts,  which  exist  independent of the  flow  speed,  and  the  supersonic 

Mach  lines  will be used  in  Section 11.3 to  connect  the  flow  in  Regions 2 

and 3 of F ig .  1 .  

At  any   t ime,   t ,   4 ( t ,   x i )  = 0 gives  the  location  of  the  characterist ic 

surface  in  Cartesian x. = x, y, z space.  At  time t + At  the  surface  will  be 

at + ( t  t At,  xi + ni A N )  = 0,  where ni (x, y,  z )  is the  direction  cosine of the 

surface  normal   and A N ( x ,  y ,  z) is the  perpendicular  distance  between 

4 ( t , x . )  = 0 and + ( t  t At,  x. t n .AN)  = 0. Expanding  the  latter  equation  about 

( t , x i )   l eads  to 

1 

1 1 1  

ANni +xi t At +t = 0 

or 

where we  have  used  the  definition of n. 
1 

(11.2) 

(11.3) 
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Substituting Eqs. (11.2) and (11.3) into (11.1) 

dN 
dt  1 i  
- - u . n  = *a (11.4 ) 

Equation (11.4) shows  that   the  characterist ic  surface  moves at sound 

speed  relative  to  the  local  flow,  in a direct ion  normal   to   i tself .   This ,  

however, is exactly  the  definition of the  acoustic  wave  fronts,   therefore 

the  characterist ic  surfaces  given  by  Eq. (11.1) a re   a l so   acous t ic   wave  

fronts.   Since we are  considering  disturbances  which  propagate  outward 

from  some  init ial   point Eqs. (11.1) and (11.4) will  be  taken  with  the + sign 

in  the  remainder of this  report .  

The  equations  for  acoustical   rays,   along  which  the  wave  fronts 

propagate,  have  been  derived  in  Refs. 3 and 4 and  will  not  be  rederived 

here .   For   the   spec ia l   case  of l inear  sound  speed  variation  the  ray  and 

the  wave  front  equations  can be solved  exactly;   see,  e .  g.  Refs. 3 and 5. 

Solutions  will be given  here   in   terms x, z (horizontal ,   ver t ical)   coordinates  

since we will be considering  flow  behavior  in  the  vertical  plane  containing 

the  a i rcraf t .  (A discussion of lateral   propagation  effects  will   be  presented 

la te r   in   the   repor t . )  

(11.5) 

Wave Front  Equation 

cosh k ( T  - 7 ) -  - 1 a '  2 (11.6) 

1 
where a = a -k ( z  - h )  (11.7) 

The  last  equation  gives  the  linear  variation of sound  speed a '  ve r sus  

altitude z, in   severa l  of the  equations  involving  rays  or  wave  fronts  we 

will  use a '  instead of z ,  they  are   s imply  re la ted  through  Eq.  (11.7); a is 

sound  speed  a t   a i rcraf t   a l t i tude  h;  k (.004 s e c   f o r  a s tandard  a tmos-  

phere)  the  sound  speed  gradient.  T is the  time  when  the  disturbance 

was  created,  T is t ime  measured   a f te r  T ,  F is the  init ial   ray  angle  measured 

-1 
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c 

positive  downward  from  the  horizontal axis. 
These  equations  have  been  written  in a coordinate  system  fixed 

with  respect  to  the  aircraft ,   which is located at x = 0, z = h and is 

headed  along  the  positive x direction. In this  coordinate  system  the 

wave  front  differential  Eq. (11.1) becomes 

+T - u + ~ +  a '  442 t 4 2  = o (11.8) 
X Z 

The  above  Eqs. (11.5)-(11.8) are   l inear ized  in   the  sense  that   small  

velocity  and  sound  speed  perturbations,  caused  by  the  aircraft,  are 

neglected.  However,  the  variation of sound  speed  with  altitude is retained 

In  Whitham's  original  paper,  Ref. 1 ,  the  perturbations  are  included  but 

sound  speed  variation  in  neglected.  Since w.e a re   main ly   in te res ted   in  

the  acoustic  cutoff  problem we must  retain  the  sound  speed  variation  with 

altitude. 

11.2 FL0.W FIELD  DESCRIPTION  BASED O N  ACOUSTIC WAVE FRONTS 

In F igs .  Z a  and Zb we have  drawn  several  wave  fronts as  given 

by Eq. (11.6). The first thing  to  be  noted is that  these  wave  fronts  form 

an  envelope  above  and  below  the  aircraft. In addition  the  envelope  below 

the  a i rcraf t   has  a cusp  at  the  sonic  altitude  and is reflected  upward 

Because of the  density of wave  front  lines  the bow wave  construction is 

given  in F i g .  Za, and  the  reflected  wave  after  the  cusp  in  Fig.  2b.  The 

equation  for  the  wave  front  envelope  can be found  by  differentiating  Eq. (11.6) 

with  respect  to 7 ,  and  setting  dx/dT = 0. It is most   c lear ly   p resented   by  

letting T - 7 be  parametrically  dependent  on z or   vice  versa:  

o r  

whe r e  

cosh kX = 

a '  
a 
- =  

X =  T -7, a' = a-k  (z  - h )  

(11.9 

(11.10) 

7 
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We will   only  consider  wave  fronts  below  the  aircraft ,   therefore 

initially  the  minus  sign  is  taken  in Eq. (11.9). As  we  move  downward 

both A and a '  increase  , as indicated  in Eq. (11.10).  At the  altitude 

corresponding  to a '  = U the  square  root  in (11.9) vanishes  and  from  then 

on  the  plus  sign is taken.  As h continues  to  increase a '  s tar ts   decreasing,  

we a r e  now  on  the  reflected  shock  front,  Fig. 2b. For   every   va lue  of z 

and X the x coordinate of the  shock  f ront   i i found  f rom Eq. (11.6). 
For   the  purpose of some  la ter   d iscussions we take a brief  digres- 

s ion   here .  The basic,  steady  flight,  problem  which we are   consider ing 

is t ime  invariant .   Therefore   the  t ime  parameter  X = T - T is   actual ly  

only a characterist ic  parameter  which  is   used  only  to  identify  different 

character is t ic   surfaces .   Equat ions (TI.9)  and  (11.10)  identify z and X along 

the  shock  front.  These  equations  consider  the  flow  at  time  T;  for  each 

altitude z on  the  shock  front  there  corresponds a wave  front  which 

originated a t  the  flight  path  at  time T. Therefore   Eqs.  (11.9) and (11.10) 

along  the  shock  front  relate z and T if we hold T fixed.  If,  however,  we 

hold T fixed  gnd  assume T v a r i e s   ( T  > T )  these  equations  give  the  altitude 

of the  ray  which  left   the  f l ight  path  at   t ime T and  a t   angle  E = 90" - p, 
where p =s in   (1 /M)  is the  Mach  angle.  Therefore  Eqs. (11.9) and (11.10) 

can be used  along  the  ray E =90° - p. In general ,   for   any  ray  leaving  a t  

angle E the  altitude z given as a function of t ime T af ter   departure  is 

-1 

(11.11) 

Although Eqs. (11.5) to  (11.10) are   based  on  l inear ized  theory a 

considerable  amount of information  can  be  obtained  from  them. In fac t  

they  contain  the  essence of the  problem.  Firs t   the  bow wave,   represented 

by  the  envelope of the  wave  fronts,   has  associated  with it a ref lected 

shock  wave  and  therefore  in a small   region  near   the cutoff  altitude  there 

a r e  two shocks  very  near   to   each  other .   These  shocks  being  caused  by 

s imilar   s ignals   are   approximately  the  same  s t rength.   ( I t  is doubtful 

that  the  reflected  shock  actually  exists  since  the  flow  behind  the bow shock is 

subsonic  near  the  sonic  alt i tude.   The  pressure  disturbances  overtake 

and  merge  with  the  bow  shock  resulting  in a reinforced bow  wave). 

Therefore   measured  overpressures   here   would be about  twice  the  value 

predicted  across   the  s ingle   shock bow  wave. 
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Next, a close  examination of the  acoustic  wave  front  and  bow 

shock  construction  will   reveal  that   there  are  segments of wave  fronts 

in   f ront  of the  bow  wave.  This  situation  occurs  just  above  the  separating 

line  between  Region 2 and 3 of Fig.  1, and is seen  in  Figs.  2b and 3 .  

Since  each  wave  front  represents a pressure  s ignal ,   in   this   region  the 

pressure  starts  to  build  up  continuously  just   prior  to the jump  associated 

with  the  shock  wave  arrival. 

As long as the  sonic  altitude ( a '=  U )  is above  the  ground,  parts 

of  wave  fronts  will  extend  into  the  region  ahead of the bow wave. We 

say  "parts"  for  the  following  reason: At each  point  on  the  flight  path  dis- 

turbances  propagate  along  rays  in all direct ions.   Those  rays  (Eq. (11.5)). 
which  leave  at  angle E = 90" - p c a r r y  the  wave  front  segments  which 

merge  to   form  the  envelope  shock.   There  are   a lso  rays   leaving at a n  

angle E > E (F ig .  3 )  which,  due  to  refraction,  become  tangent  to  the 

ground  and  then  bend  upward.  Any  ray  leaving  at  an  angle  greater  than 

E runs  into  the  ground, we will   consider  the  pressure  signal  ended 

there.   Therefore  sections of wave  fronts  corresponding  to  angles  be- 

tween E and E will  continue  propagating;  it is just  these  sections  which 

get  in  front of the bow wave. 

M 

g M  

g 

M g 

If we draw a sequence of wave  fronts  and  locate  where  the  ray 

corresponding  to E meets  each  wave  front we get  the  dashed  line  curve 

shown  in  Fig. 4 .  No direct   s ignals   f rom  the  a i rcraf t   can  get   ahead of this 

"signal  cutoff"  curve.  Figure 4 is a scale  drawing  corresponding  to a 

Mach 1.1 flight  at 3 0 ,  000 f t .  Notice  that  the  entire  cutoff  phenomenon 

is quite  localized,  within 1000 feet  in  the x direction  and  about 3 ,  000 

feet  in  the 1; direction. 

t3 

Pressure  t ransducers   located  a t   a l t i tudes a ,  b ,   c ,  as shown  in 

Fig.  4 ,  would  indicate  readings  shown  in  Fig. 5. Upstream of the  "signal 

cutoff"  curve  and  the bow wave  there is no  disturbance. At altitude a an  

ordinary "N" wave  would  be  indicated  by  the  transducer. In Fig.  5b the 

transducer  would first see  those  acoustic  pressure  waves  which  arrive 

before  the  bow  shock.  Here  the  pressure  builds  up  gradually  until  the 

shock  arrives  then  there  will  be a pressure  jump.   Final ly   in   Fig.  5c  the 

t ransducer  is in  the  subsonic  region  and  its  reading  would  be a continuous 

pressure  buildup  with  no  jumps. 

9 
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11.3 THE  WAVE  FRONTS AS SUPERSONIC  CHARACTERISTICS 

As mentioned  in  the  previous  section  the  problem of a s teady 

horizontal   f l ight  in  an  atmosphere  which  varies  only  in  the  vertical  

direction is time  invariant.  That is, the  flow  field  surrounding  the air- 

craf t  is always  the  same.  Let  us  now  consider  the  characteristic Eq. (11.1.) 
for a steady  two-dimensional  flow: 

= o  (11.12) 

On  any  surface + (x, Z )  = const 

dz 
+x--"+ - d x z  (11.13 ) 

Substituting (11.13) into (11.12) and  solving  for dz/& 

(11.14) 

which is the familiar  (Ref.  8 )  expression  for   the  character is t ic   s lope  in  

two-dimensional  supersonic (u2 t w2 > a2) flow. 

This  relation  gives  another  clue as to  the  flow  behavior  in  the 

sonic  transit ion  region  and  the  subsonic  to  supersonic  f low  connection. 

In the  subsonic  region ( F i g .  6 )  the  wave  fronts, all car ry ing   pressure  

signals,  propagate as in  an  ordinary  subsonic  flight.  However  these 

same  wave  fronts  extend  upward  into  the  supersonic  region  where  they 

correspond  to   ordinary  supersonic   character is t ics .  In fact,  in  the 

supersonic   region  they  are   somewhat   l ike a Prandtl-Meyer  type  com- 

pression  wave.  (The  analogy  with  the  Prandtl-Meyer  flow is for  con- 

ceptual  purposes  only;  one  reason  for a difference  would  be  the  nonuniform 

upstream  flow). 

In the  compression  region  above  the  sonic  line  the  flow is the  same 

as that  past a concave  wall as shown,  for  example  in  Fig. 4 . 7  a,  b on page 

96, Ref. 9. Actually  the  bow  shock  outlined  by  the  Prandtl-Meyer  type 

compression is created  by  compression  s ignals   refracted  f rom  the  sub-  

sonic  region  below.  This is different  from  the  bow  wave at higher  al t i tudes 

which is formed  by  compression  s ignals   direct ly   f rom  the  a i rcraf t .   Since 
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the  shock  wave at i ts   very  end is slightly  more  than  an  enhanced  charac- 

te r i s t ic   i t  is quite  weak  and  the  boom  strength is therefore small. The 

overal l   pressure  increase,   however ,  is caused  by  the  shock  plus  the 

compression  wave  f ronts   upstream  and  downstream of it; therefore  the 

total   pressure  r ise  can  be  somewhat  greater  than  that   across  the  shock 

11.4 COMMENTS 

The  results  given  in  the  previous  sections  are  based  on  wave 

front  analyses.  In regions  where  rays  approach  each  other  and  form  an 

envelope  the  ray  tube  theory of geometr ic   acoust ics  is inapplicable. For 

our   problem  the  f ree   s t ream  sonic   l ine is an  envelope,  or  caustic,  of 

those  rays  leaving  the  aircraft   at   an  angle E = 90"  - p. (This   resul t  is 

classical   and is discussed  in   several   texts ,   e .   g .   Ref .  10 page  318,  and 

Ref.  11  pages 14 1 ,  159).  One of the  requirements  for  application of 

geometric  acoustics is that  the  flow  field  can  have  only  slow  variation 

along  the  ray.  However we have  seen  that  within a small  domain  about 

the cutoff region  there  are  rather  rapid  changes  in  the  pressure,   for 

example.  The  major  difficulty  associated  with a quantitative  description 

of this  problem is that  the  acoustic  disturbances  build  up  to  change  the 

flow  field  and  the  propagation  properties.  These  changes  in  turn  affect 

the  disturbances,  and  it is this  interplay of cause  and  effect  which is S O  

difficult  to  determine.  The  classical  solutions  to  these  problems  in 

l inearized  optics  are  obtained by reverting  to  the  wave  front  formulation 

as opposed  to  the  ray  tube  formulation.  This is just  what we have  done. 

In Fig.  6 is a drawing of the  flow  field  in  the  transonic  interaction 

region.  The  sonic  line  for  the  true  physical  situation  does  not  remain at 

a fixed  altitude as it  would  for a l inearized,  acoustic  solution. In  addition 

s t reamlines   are   def lected  upward  and  the  shock,   when it is formed  within 

the  compression  region,  probably  bends  slightly  upstream. 
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CHAPTER 111 

THE  REGION O F  INCREASING SHOCK OVERPRESSURE 

111.1 O'BLIQUE SHOCK THEORY 

It  was  mentioned at the  end of Section 11.3 that  the  shock,  near 

its termination  in the Prandtl-Meyer  like  region,  can  cause  only a 

small pressure  jump. We will  show  here  that  the  region of increased  

overpressure   occurs  at the  end of Region 1 of Fig.  1. Recall  that  the 

cri terion  for  separating  Regions 1 and 2 is that  in 1 the  flow  behind  the 

shock is supersonic  while  in Z it is subsonic. We see  then  that   in  order 

to  evaluate  this  criterion  oblique  shock  relations  are  required. 

Moeckel  (Ref. 6 )  showed  that  as a shock  propagates  into a region 

of decreasing  Mach  number  the  pressure  jump  across   the  shock  decreases  

and  the  shpck  angle  (with  the  horizontal)   increases.   This  behavior  con- 

tinues  until  the  shock  angle  gets  close  to  that  angle  at  which  subsonic 

flow  occurs  behind  the  shock,  then  the  pressure  jump starts to   increase 

while  the  Mach  number  continues  to  decrease.  Apparently  the  shock  angle 

and  Mach  number  vary  in  such a way as to  cause  the  increasing  pressure 

jump.  Unfortunately,  the  method of analysis  does  not  help  explain  this 

change  in  behavior,  however  an  explanation  based  on  physical  reasoning 

is given  in  Section 111.3. Lighthill  (Ref. 7 )  s ta tes  a similar  finding  but  he 

does  not  give  any  details.  Quoting  from  his  paper:  "The  author  attempted 

a more  exact   theory of the  refraction of a shock  entering a region of 

parallel  and  otherwise  undisturbed  steady  flow  at  monotonically  decreasing 

supersonic  Mach  number,  which  indicates  that  such  an  increase of strength 

occurs  until a state is reached  in  which  the  flow  behind  the  shock is sub- 

sonic;  after  this  the  refraction  theory  does  not  apply,  but  the  shock  pre- 

sumably  weakens". 

The  method  developed  below,  which is essentially  the  same as 

Moeckel's,  requires  the  flow  behind  the  shock  to  be  supersonic.  Referring 

to  Fig.  7, a shock is assumed  to  be propagating  into a nonuniform  region, 
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as it c ros ses   each   (ho r i zon ta l )   s t r eaml ine  a reflected  Mach  wave, 

separating  Regions 3 and 4 of Fig.  7, is induced. We pe rmi t   p re s su re  

va r i a t ions   ac ross   s t r eaml ines ,   such  as would  occur   in   the  Earth’s  

atmosphere,   however we a s sume   t ha t   t he   p re s su re   r a t io  a c r o s s  the 

s t reamline  remains  constant :  

” = ”  
P1  P5 

Matching  pressures   in   each  sect ion  in   Fig.  7: 

Ilr_ = &  .P4.p3.” 
P1 P4 P3 P2 P1  P3 P2 

(111.1 ) 

(111.2 

where we have  used  Eq. (111.1). 

P re s su re   r a t io s   i n  Eq. (111.2) can   be   expressed   in   t e rms  of Mach 

numbers   and  angles  ( M 2 ,  e,) and  (MI,  e , )  by  using  Eqs.   (128),   (132),   (139a),  

and   the   f i r s t   two  te rms  on  the  right  hand  side of (151)  in R e f .  12 .  After 

making  these  substitutions  let M, = M, t AM and 0, = 8, t A 0  and  solve 

for  A e / A M . *  The  result ing  expression is 

“ *e - - M (sin2 8 + A C )  
A M  2M2 s i n 2 0  t B - C  

where 

(111.3) 

M, e = M,, e, 

M3 is g iven   in   t e rms  of M and 8 in  Eq.  (132) of Ref. 12. 



111.2 A SAMPLE  COMPUTATION 

In  order  to  compare  different  theories of shock  strength  near  the 

cutoff  altitude  we  have  taken a sample  flight, M = 1.1 a t  40, 000 ft. in a 

standard  atmosphere  and  have  computed  shock  overpressures  using  the 

computer  program  described  in Ref. 13. For  this  flight  condition  the  cutoff'  

altitude is about  12, 500 ft.  At 20, 000 f t .  we.  determined M and 8 to   use  as  

initial  conditions  for  solving  the  differential  Eq. (111. 3) .  

The  results of this  computation  give  the  shock  Mach  number  and 

inclination.  From  these,  using  oblique  shock  relations, we determined  the 

pressure  jump  across  the  shock.  However,  these  results  (in  fact  this  whole 

approach)  are  based  on  two-dimensional  theory  and  are  not  corrected  for  the 

geometric  axially  symmetric  spreading of the  shock  front.  For a uniform 

atmosphere  the  above  theory  would  predict a constant  shock  angle  and  Mach 

number.  Actually  since  the  shock  is  spreading  away  from  its  source  it  

would  weaken  by ( d i ~ t a n c e ) - ~ / ~  according  to  Whitham's  theory,  Ref. 2, 

Eq. (19). Therefore  the  pressure  jump  results  obtained by integrating 

Eq. (111. 3)  ark  "corrected" by including  an  attenuation  proportional  to 

(distance) -3/4. In F ig .  8 we  compare  pressure  jumps  obtained by the 

theory of Ref. 4 with  those  obtained by the  present  oblique  shock  approach. 

The  numbers   in   parentheses   are   local   pressure  jumps;  i. e. , (p re s su re  

ratio,   Ap/pX(local  atmospheric  pressure).  

It is   seen  that   the  oblique  shock  theory,   when  carried  to  i ts   l imit  of 

applicability,  predicts  pressure  jumps  about  three  times  those of Ref. 4; 
however, we believe  that  an  increase of order  two t imes,   as   indicated  a t  

the  bottom of page 8,  would  be more  correct.  This  situation  should be 

further  discussed.  First ,   the  shock  here  is   nearly  vertical;   for  the  above 

problem  i t   was 8 7  degrees  from  horizontal.  The  ground  reflection  factor, 

therefore,  should be near  1 instead of 2. Second,  the  theory  is  based  on a 

mathematically  perfect  atmosphere. A slight  variation  in  temperature 

could  radically  alter  the  whole  picture;  for  example, a temperature  

increase of about 4 degrees  would  change  the  altitude of the  pressure  peak 

(in  Fig. 8 )  f r o m  13, 700 to 15, 000 feet.  This  sensitive  dependence on local 

meteorological  conditions  is  characteristic of shock  behavior  when  its 

Mach  number  is  very  close  to 1, say of order  1. 005 as  in  the  above 

problem;  therefore,  along  or  near  the  ground  where  temperatures  vary 
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haphazardly,  the  only  thing  we  can  say is that  the  shock, if it exists  at   al l ,  

is very  nearly  vertical   and  reflection  factors of 1 or   even  less   are   to   be 

expected. 

111. 3 COMMENTS 

The  theories of Refs. 2 and 4 do  not  use  oblique  shock  relations. 

They  consider a shock  propagating  down a ray  tube  with  the  shock  front 

normal  to  the  sides of the  tube  and  hence  use  normal  shock  relations. 

For  this  approach  the  condition of the flow  behind  the  shock; i. e. , whether 

it is subsonic  or  supersonic, is disregarded.  Whitham's  original  paper, 

Ref. 1, requires  supersonic  flow  everywhere  since  that  theory  is  based  on 

properly  locating  the  characterist ics.  And  the ray  tube  theories,   since  they 

do  not  explicitly  consider  the  shock  angle,  cannot  completely  describe  some 

of the  flow properties  obtained  by  the  oblique  shock  approach. 

For  the  method  described  in  this  chapter,  when  the flow  behind  the 

shock  approaches a Mach  number of unity  the  reflected  characteristics 

(F ig .  7)  beco'me nearly  vertical.  Since  the  incoming  shock  is  also  close 

to  being  vertical  all  the  reflected  pressure  disturbances  tend  to  remain 

in  a vertical  plane  in  the  vicinity of the  shock.  Note,  the  pressure  in- 

c r ease  p / must  match  that   across  the  shock  p3/p2  plus  that  of the  re- 

flected  wave p /p   Therefore   there   is  a p re s su re  buildup  in  this  region. 

When the flow  behind  the  shock is subsonic  the  pressure  disturbances 

propagate  away  in  all  directions,  hence  this  localized  buildup  cannot  occur. 

5 p1 

4 3' 

It  seems  that  the  ray  tube  approaches,  Refs. 2 and 4, are  valid 

when  the  flow  behind  the  shock is   e i ther   subsonic   or   supersonic ,   except  

for a region  where  the flow  behind  the  shock  approaches  Mach 1. The 

regions of validity  occur  when  the  disturbances  created by the  shock  are 

carried  away by  the  flow  behind  the  shock.  In  Ref. 6 Moeckel  gets  an 

analytic  representation of the  shock  Mach  number  and  angle  at  which  the 

pressure  s tops  decreasing  and  s tar ts   increasing  with  decreasing  Mach 

number.  However,  this  relation is  rather  involved  and  we  have  not  been 

able  to  determine  its  physical  significance,  other  than  the  reasoning  given 

above. 

The  breakdown of ray  tube  theory is very  s imilar   to  a situation 

described  in Ref. 15. Here a shock  propagating  down a channel  (or  tube) 



was  considered;  and  a  disturbance,  such  as  a  small  change  in  tube  area 

was  introduced. When the  flow  behind  the  shock  was  either  subsonic o r  

supersonic a l inear  small   disturbance  theory  was  adequate for  describing 

flow  perturbations.  However,  when  the  shock  strength  was  such  that  the 

flow  behind  was  transonic  the  linear  approach  was  inapplicable.  It  was 

shown  that  in  this  transonic  case  the  pressure  disturbances  build up and 

sometimes  coalesce  to   form a  second  shock. 
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CHAPTER IV 

IMPROVEMENTS  TO  THE  ACOUSTIC  THEORY 

I V . l  A PERTURBATION  SOLUTION  TO  THE WAVE FRONT EQUATION 

Because of the  complicated  nature of the  flow  in  the  cutoff  region 

it is pract ical ly   impossible   to   obtain  an  exact   solut ion  there .   Further-  

more,   in   l ight  of the  discussions  given  in  the  previous  two  chapters 

pract ical ly  all of the  flow  properties  are  qualitatively  known. Also, any 

attempted  full  flow  field  solution  to  the  present  idealized  problem  would  prob- 

ably  be  made  worthless  by  adding  some  realist ic  parameters:   wind  variation, 

a i rcraf t   maneuvers   and  temperature   inversions.  We  wil l   therefore   pre-  

sent  in  this  chapter  two  techniques  which  improve  the  acoustic  results of 

Chapter 11. 

The  f irst   technique  starts  with  the  partial   differential   Eq. (11.8) 

for  the  wave  fronts.   However,   we  will   al ter  the  sound  speed  definit ion: 

aT- U @  X t a *J" ax t cDZ = o  (IV. 1 ) 

The  augmented  sound  speed  is  defined as follows: 

a = a  ( l t q ( s ) )  
* I  

(IV.2) 

Where s is distance  along a r ay   and  q ( 9 )  is an  increment   added  to   the 

sound  speed  in  order to be t te r   represent  a true  shock  propagation  speed. 

This   increment  is induced  by a finite  amplitude  source as  opposed  to  the 

point   source  used  previously.   For   s implici ty   we  wil l   use   Whitham's  

"far field"  approximation, q ( s  ) - s 3 '4 .  Referr ing  to   Eq.  (3 .12 )  of 

Ref. 4 and Eqs. (4 .3 )  and ( 3 . 9 )  of Ref. 13: 

- 

Y + l  hp - y t l  K :. tl = - " 4 Y  P 4 y  "4 S 
(IV.3) 



M3'4. L3'4. VF 
where K = 

(M'- 1 1 ~ ' ~ .  FR 

M = aircraft   Mach  number 

L = aircraft   length 

V F  = volume  factor 

F R  = finenes s ra t io  

We will  obtain a perturbation  solution  to Eq. ( I V . 1 )  of the  form 

(IV.4 ) 

where I$= x t u x  - E a 

The  function I$ is the  acoustic  wave  front,  given  in  Eq. (11.6 ). If we 

equate   @to  zero we see  that  the  perturbation  term r,b is an  increment  

added  to thevx coordinate of the  acoustic  solution. We relate  Q to  the 

sound  speed  perturbation, q, by  substituting ( IV.4)  into Eq. ( IV.  1 ), 

retaining first o r d e r   t e r m s  

a 1 

a ' (cosh kh " g - )  

'T sinh k h  
a '?  sinh kh h +  = 0 ( IV.5)  

' Z  J z o s h  k h  - (rf a '  - 1 

a 

The  characteristic  equations  for  Eq. ( IV.5)  a r e  

a' 
dz - 

a ' ( cosh  k X - 7 )  
" 

dT  sinh k h 

J a '  - cosh k X  - (-&f a - 1 
a 

( IV.6)  

( IV.7)  

Equation (IV.6)  is the  same as the  characterist ic  equation  that  

would  be  found  from  the  original  acoustic Eq. (11.8); it is ,  in  fact,  the 

equation  for  the  ray  locus.  This  can  be  seen  by  eliminating X ,  using 
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Eq. (11.11 ); the  resulting  differential  equation is the  same as the  one 

corresponding to Eq. (4 )  of Ref. 3 .  

The  solution  to Eq. ( IV.7)  can  be  writ ten  formally  by  integrating 

with  respect to T. Since  the  characteristic  curves,  given  by Eq. ( IV.6) ,  

are   rays ,   the   integrat ion is along a ray: 

f a '  q sinh k h  d T '  
dJ = - 

The  above  integral  can  be  considerably  simplified  by  substituting A ' =  T I - - 7  

and  eliminating a '  by means of Eq. (11.11): 

(IV.8) 
0 

Therefore  the  improved  wave  front  equation  is 

CD ( T , x ,   z )  = 0 

0 ( I V . 9 )  

In the  integral   term of Eq. ( IV .9 )  distance,  s ,  can be  found by 

integrating 

d s  = d x  h"7gF 
along  the  ray,  using  Eq. (11.5) to  determine - After  carrying  out  this 

integration x and z can be el iminated  in   terms of E and X using  Eqs. (11.5) 
and (11.11). The  result ing  expression  is  

dz 
dx ' 

s =  
tanh k A - sin E 

1 - sin E tanh k A I} (IV.10) 



By fixing a value of the  t ime  parameter A a specific  wave  front 

is identified by Eq. (IV.9).  There is  one  difficulty,  however,  due  to 

the  fact  that  the  correction  term  involves  an  integration  along a ray   and  

each  point  on  the  wave  front  corresponds  to a different  ray.  The x, z 

coordinates  for  any  wave  front, A ,  can  be  determined as follows:  For 

any  altitutde z Eq. (11.1 1)  can  be  used  to  determine  the  corresponding E, 

this identifies  the  ray. With E known  we can  use  Eq. (IV.  10)  in  (IV.9)  to 

solve  for  the x coordinate  on  the  wave  front. 

The bow shock  front is determined  by  finding  the  envelope of the 

improved  wave  fronts,   Eq.  (IV.9).  A parametr ic   representat ion,   l ike  

Eq. (11.9), between z and k along  the  envelope is obtained  by  taking  the 

partial  derivative of Eq. ( I V . 9 )  with  respect  to h:  

cosh   kh  = ("TI * aa ' 

(IV.11) 

In determining  (IV.11)  the  angle  was  eliminated  by  setting  cos E = a / U  = 1/M. 

This  relation,  in  accordance  with  the  discussion  leading to  Eq.  (II . l l) ,  im- 

plies  that   those  rays,   carrying  wave  front  segments  which  form  the  envelope 

or   shock,   leave  the  a i rcraf t   a t   angle  E = 90" - p, where p is the  Mach  angle. 

The  cutoff  altitude  for  the  improved  shock  front is found f rom the  vanishing 

of the  square  root  in Eq. (IV.  11);  that  is,  when 

1 

u = -  a 
1 - T  

We see,  then,  that  the cutoff altitude  occurs  when  the  "improved"  pro- 

pagation  speed  equals  the aircraft speed.  This  differs  from  the  acoustic 

theory of Chapter 11, there  the cutoff altitude  was  where  the  local  atmos- 

pheric  sound  speed  equals  the  aircraft   speed.  The  above  definit ion  for 

the  cutoff  altitude is in  agreement  with  Ref. 4 Eq. ( 3 . 8 )  where  it   was  shown 

that  the  shock  front  became  vertical  (which,  for  the  present  problem, is 

equivalent  to  cutoff)  at  that  altitude  where  the  shock  velocity  equals  the 

ai rcraf t   speed.  



It is not  difficult  to  estimate  what  effect  the  improvement I I q t 1  

will have on  the  acoustic  solution,  given  in  Eqs. (I1,S)and (11.6). First, 

the x coordinate of the  shock is lengthened by 

= 100 ft .  

That is  the x coordinate of the  shock  will  be  about 100 f t .  upstream 

of the  acoustic  wave  front  envelope.  To  get  this  estimate we used 

q * 10 since  it  is of order  Ap/p (see  Eq..IK.31);also  the  travel  time 

A is about  100  sec.,  and  sec E - 1. 

- 3  

The  change  in  the z coordinate  can  be  estimated  from  the  cut- 

off relation  given  in  the  previous  paragraph: 

a = a t k (z-h) = U (1-q) 
I 

Let a = 1000 ft./sec., U = 1100 ft . /sec. ,  k = .004 sec .  , - 1  

h = 30,000 f t . ,  q = 10 - 3  

acoustic cutoff z = h t .k 
a - u  = 5,000 ft .  

improved  cutoff z = h + 7 a - u  
i- 9 = 5,250 f t .  

That is the  cutoff  altitude is about 250 ft.  higher  with  the  improved 

approximation. 
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1v.2 AN IMPROVED WAVE FRONT DETERMINATION* 

The  technique  described  here  permits a more   accu ra t e   e s t ima te  

of the  shock  shape  while  using  the  acoustic  results  obtained  in  Chapter 11. 
We know that the  dis turbance  propagat ing  f rom  the  a i rcraf t   t ravels   a t  a 
speed   grea te r   than   the   f ree   s t ream  sound  speed   ( see ,   for   example ,  Eq. 4 

of Ref. 2 ) .  Therefore  the  basic  idea  behind  this  approach is to   p rescr ibe  

a sound  speed,  varying  linearly  with  altitude,  but  which  permits a m o r e  

exact  description of the  true  propagation  speed.  Since we will  keep  the 

linear  sound  speed  variation,all  the  wave  front  and  ray  equations  used  in 

Chapter I1 can be retained.  

The  ' ' sound  speed",   A,  used  here is ( see   Eq .  (11.7) for   compar ison) ,  

A = CY - /3 ( z - h )  ( IV .12)  

where h is a i rcraf t   a l t i tude,   and  the  two  parameters  CY and p a r e   t o  be 

de te rmined .   F i r s t ,  CY is determined  by  having  the  slope of the  wave  front 

envelope  equal  the  slope of the bow wave  at   the  aircraft .   The bow wave 

slo'pe,  tan 0 is known  in  terms of the  aircraft   Mach  number  and  nose 

angle.  At its origin ( z  = h ,  x = X = 0 in   Eqs.  (11.6 ) and  (11.10))  the  wave 

front  envelope  slope is, i n   t e rms  of LY instead of a., 

h '  

Equating  the bow wave  and  the  envelope  slopes 

CY = tan 8 
FJ u2 - CY2 h 

o r  (Y = U s in  Oh 

(IV.13) 

(IV.14) 

(If the  bow  wave is detached  neither  this  nor  any of the  "uniformly  valid" 

solut ions  are   appl icable   near   the  a i rcraf t .  In  this  case  the  shock  slope 

would  have  to  be  matched at some  d i s tance   f rom  the   a i rc raf t ,   where  

Whitham's  theory is applicable ). 

* 
This  method of improving  upon  acoust ic   theory  resul ts   was  developed 

by  David  C.  Chou, a graduate  student at MIT. 
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At the  ground we a r e   f a r   f r o m  the aircraft  and  well  into  the  sub- 

sonic  region of Fig,  1 .  We therefore  assume  that  the  wave  front  pro- 

pagation  speed  here is equal  to  sound  speed.  Therefore  the  parameter 

p is found  by  setting A = a at z = 0: 
g 

A =CY t ph = a  
g 

a -CY a - U s in  8 
or  p = +  = . g  h ( IV .   15 )  

where a = sound  speed  at  the  ground. 
g 
We a r e  now able  to  use all the  equations  given  in  Chapter I1 af ter  

making  the  following  substitutions: 

substitute A f o r   a '  

a for  a 

/3 for k 

IV .3   NUMERICAL  RESULTS 

Since  the  approach  described  in  Section IV.2 is   easy  to  evaluate 

we c a r r i e d  out a computation  for a Mach 1.1 aircraft   f lying at 30,  000 ft.  

(In  order  to  have  an  attached  shock a nose  angle of 1" w a s  assumed).  

The  results  are  given  in  Fig.  9 .  Also  given  in F i g .  9 are   resul ts   for   the 

same  flight  conditions  as  computed  by  acoustic  theory (Eqs. (11.5), 

(11.6)), and  by  the  Sonic  Boom  Computer  Program  described  in  Ref. 13. 

The  latter  results  are  given  by  heavy  dots.  

We see  that  the S B C P  data  agrees,   for  the  most  part ,   with  the 

acoustic  results.   The  theory of Section IV.2 predicts  perturbation  effects 

which a r e  too large.   From  est imates   der ived  a t   the   end of Section IV.1 

the  difference  between  improved  and  acoustic  theories  should  be of o rde r  

2 0 0  ft.  in cutoff coordinates.  The  theory of Section IV.2 predicts  differences 

of o rde r  1500 ft.  





CHAPTER V 

SUMMARY 

V.l A REVIEW O F  THE FINDINGS 

The  resul ts  of the  previous  sections  enable us  to  describe  the 

shock  wave  behavior  in  the  neighborhood of the  sonic  cutoff  altitude. 

We have  not  given a solution  to a specific  problem.  (Although we did 

use a spec ia l   a tmospher ic   t empera ture   model ,  it is felt  that  this  model 

is rea l i s t ic   and   the   resu l t s   a re   qu i te   genera l .  ) Rather ,  we have 

presented a considerable  amount of evidence  based  on  the  theory of 

character is t ics ,   acoust ical   theory,   and  obl ique  shock  theory.  By using 

and  combining  these  theories we have  been  able  to  present a logical 

description of the  various  physical  phenomena  in  the  shock  cutoff  region. 

To review  the  findings, we see that   the  shock  at   f irst   propagates 

away  f rom  the  a i rcraf t   in  a manner   l ike  that   descr ibed  in   Refs .  1 ,  2,4.  

That is, the  pressure  jump  across   the  shock  decreases  as i t   moves 

outward.  Because  (as we have  assumed)  the  sound  speed  increases  as 

the  ground is approached,  the  shock  Mach  number  decreases. In addition, 

due  to  refractive  effects,  the  shock  inclination  to  the  horizontal  approaches 

9 0 ” .  As the  shock  continues  moving  into  the  higher  temperature  region 

its  Mach  number  and  inclination  combine so as to  cause  the  flow  behind 

the  shock  to  become  subsonic,  this  being  determined  by  oblique  shock  theory. 

None of the  above  references  adequately  describe  the  f low  behavior a s  this 

subsonic  (behind  the  shock)  region is approached. It was  shown  in  Chapter 

111 that  although  the  shock  Mach  number is decreasing,  i ts   inclination com- 

bines  with  the  Mach  number so as to   cause  the  pressure  jump  across   the 

shock  to   increase.   This   increase,  as discussed  in  Section 111.3, is caused 

by  the  tendency of reflected  disturbances  to  remain  in  the  vicinity of  the 

shock.  Instead of propagating  away,  downstream,  they  build  up  inducing 

ove rp res su res  of order  twice  those  predicted  by  Ref.  4 .  



A s  we continue down  the  shock  front,  into  the  region  where  the 

flow  behind  the  shock is subsonic ,   the   overpressures   s tar t   decreasing 

again  since  the  disturbances  behind  the  shock  are  again  able  to  propa- 

gate  away.  This is borne  out  in  Ref. 14 where  an  experiment   was  des-  

cribed  in  which a shock  was  propagated  down a tube  which  had a heated 

base  plate.  This  heating  induced a vertical   temperature  gradient  parallel  

to the  shock  front,  which  had  only  subsonic  flow  behind  it.  For  cases  in 

which  the  shock  reached  the  base  plate  the  pressure  jump  across  the 

shock  decreased as vertical  distance  above  the  plate  decreased.  That is 

the  pressure  jump  was  smaller   in   the  hot ter   regions.  

Continuing  further down  the  shock  front we get  to a region  where 

compression  wave  fronts  have  arrived  ahead of the  shock.  These  fronts 

are  signals  traveling  along  rays  which  have  entered  regions  where  the 

propagation  speed is greater   than  the  a i rcraf t   speed.   There is a definite 

limited  region,  set  by  the  ground  the  temperature  profile  and  the  aircraft 

altitude  and  Mach  number,  in  front of the  shock  where  these  signals  can 

reach.  The  flow  configuration,  such  as  indicated  in  Fig. 6 ,  is a steady 

one,  moving  with  the  shock  at  aircraft  speed.  The  compression  wave 

fronts,   being  characterist ic  surfaces,   form a Prandtl-Meyer  like  com- 

pre  ssion  fan  and  the  shock  ends  embedded  in  this  fan.  Actually  it  would 

be  more  accurate   to   say  that   the   shock is formed  here ,  by  the  compression 

signals  rising  from  the  subsonic  region  below. 

This  description is again  in  agreement  with  the  results of Ref. 14, 

when  the  base  plate  in  the  shock  tube  was  heated  enough  that  sound  speed 

near  the  plate  was  greater  than  the  shock  speed. A steady  configuration 

was  attained  in  which  the  shock  vanished,  somewhere  above  the  sonic 

altitude,  embedded  in a compression  region  which  extended  upstream of 

the  main  shock  front  (see  Fig. 1 0  of Ref. 14). 

It is bel ieved  that   the   pressure  increase  across   the  region of the 

combined  shock  plus  compression  wave  fronts  remains  fairly  constant. 

However  the  pressure  jump  across  the  shock  alone  decreases  until  it   van- 
ished  completely,   from  this  point  down  the  pressure  increase is smooth 

with  no  jumps. 

Below  this  region,  where  the  flow is completely  subsonic,  the 

pressure   , increase  is like  that  below a subsonic   a i rcraf t .   There is however, 
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one major   difference.   For  a steady  subsonic  flow  the  pressure  signals 

theoretically  reach  infinitely far upstream. In the  present  problem  the 

signals  are  confined  behind a "signal  cutoff"  curve. All this ,  of course ,  

neglects  reflections off the  ground  and  propagation  through  the  ground. 

V.2 LATERAL CUTOFF 

All  the  previous  discussions  considered  only  the  vertical (x, z) 
plane  containing  the  aircraft  flight  path. We will now  show  that  the  flow 

behavior  on  either  side of the  (x, z )  plane is essentially  the  same as that 

already  described.  The  physics of the  situation is unchanged  and all that 

is a l t e r ed  is the geometry.  

Let  us  first  recall  the  fact,  proven  in  the  Appendix of R e f .  4 ,  that  

(in  the  absence of winds)  any  ray  will   always  remain  in  i ts   init ial   vertical  

plane.   Furthermore  the  refractive  properties of this  ray  are  set   by  the 

component of the aircraft   velocity  in  this  plane.  

In order  to  demonstrate  the  lat ter  fact   consider Eq. (11.11) which 

relates  propagation  t ime  and  alt i tude  for  any  ray  leaving  at   an  init ial  

angle e. Also consider Eqs. (11.9) and (11.10) which  refer  to  rays  in  the 

x, z plane  leaving at angle E = 90" - p; rays  which  leave  at   this  angle  carry 

wave  front  segments  which  form  the bow shock.  Let  us now generalize 

the  angle E to  mean  the  angle  between  any  shock  forming  ray  and  the 

horizontal  plane.  For a vertical  plane  making  an  angle w with  the x,  z 

plane it is shown  in  Fig.  10  that 

cos E cos w = a / U  

or   cos  E = a / U  cos w (V.1) 

For   the  ver t ical  (x, z )  plane  through  the  flight  path w = 0 and 

cos E = a / U .  Therefore  for  any  angle w the  only  change  in Eqs. (11.9) 
and (11.10) is to  write U cos o instead of U: 



. ... . . . .. . ... 

We see  then  that, as stated  previously,  the  refractive  properties 

of the ray  and  the  shock  front  are  f ixed by  the  component of the  a i rcraf t  

velocity  in  the w plane.  Therefore  for  this  case  lateral  cutoff occurs  

sooner  in  t ime  and  at  a higher  altitude  than  under  the  aircraft. 

Another  way  to  look  at  the  result ( V . 2 )  is  as  follows:  Any  wave 

front,  and  hence  the  shock,  always  propagates  in a direction  normal  to 

its surface  (see Eq. (11.4)); also  s ince the rays  are   normal   to   the  surface,  

the  front  always  propagate  in  the  same  lateral  plane  defined  by  angle w . 
Therefore  the  wave  front  in  any  lateral   plane  sees a f r e e   s t r e a m  flow of 

magnitude U cos o . Hence  starting  at  the  “Mach  angle”  sin 

the  lateral  shock  propagates  through  the  same  type of regions  and  exhibits 

the  same  sort  of phenomena as the  shock  below  the  aircraft ,   already 

described. 

- 1  
(u  cos a )  w 
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Figure 2.3. Wave front  construction of bow shock 
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APPENDIX A 

DERIVATION O F  CHARACTERISTIC  EQUATION 

For  completeness,  the  equations. of cha rac t e r i s t i c   su r f aces   fo r  

the  Eulerian  f low  equations  will   be  derived  here.   These  equations  are 

(using  the  convention of summing  on  repeated  subscripts):  

1 
U i t  t u . u-  t - pxi = 0 

J 'Xj P 

A charac te r i s t ic   sur face  + (t ,  x. ), for   any  par t ia l   d i f ferent ia l  

equation,  has  the  property  that i f  data   are   prescr ibed  on  the  surface 

( p (+), p (+), u. ( 4 ) )  then  the  partial  differential  equation  cannot be used to 

find  values of (p ,  p,  ui)  outside of +. That is the  outward  derivative,   from 

+, cannot be found  and  the  data  cannot be extended  from  the  init ial   surface.  

The  given  partial  differential  equation,  for  such a situation, is essent ia l ly  

a tangential  derivative  on  the  surface. 

1 

1 

The  direction  cosines, , for   the  normal   to   the  surface  4( t ,  xi) a r e  k 
defined as follows: 

where Q = */+: t ei ; i = 1 ,2 ,3 ;  k = 0, 1 , 2 , 3  

The  normal   der ivat iove  f rom  the  surface + is 

d a 
" 

dn k axk - 6  - , where x. = t 
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Any  directional  derivative, ak K, is a tangential  derivative  on + i f  

ckak = 0; also,   any  derivative - can  be  written - - t tan- 

gential  derivatives. To  prove  this last s ta tement   consider  

a 

a a -  d 
a xi 8x1 'i 

By using  the  above  definitions  it is easily  shown  that  the  term  in  paren- 

theses  in  Eq. ( A - 4 )  is a tangential  derivative. 

' Therefore,  substituting  for - in  the  Eulerian  flow  equations  we 
i 

a 
ax 

get 

dP 
d u. 

C E O  4- 5 , U i ) X  4- P si 7 1 = tangential  derivatives 

d u  
( 5 0  t Eiui) e t - dP = tangential   derivatives 

P dn 
( A - 5 )  

( E b  t 5 , U i )  dP - - YP ( 5 0 "  S i U i )  5 dP - 
P 

- tangential   derivatives 

Equation (A- 5 )  is   an  equation  for  the  normal  derivatives of the  flow  variables 

in   t e rms  of data  which  are  prescribed on  the  surface  +(t ,  x. ). If the  sur-  

face  is  a characterist ic  surface  the  set  of Eqs .  ( A - 5 )  cannot be solved  for  

the  normal  derivatives -,- , - and  the  determinant of the  coefficients 

equals  zero.  Taking  the  determinant  and  setting  it  equal  to  zero 

- 

1 

dp  dp  dui 
dn  dn  dn 

where a2 = yp/ p 
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Using the  definition of 5, given in (A-Z), Eq. (A- 6 )  l eads  to the  following 

partial   differential   equations  for  the  characterist ic  surfaces:  

Equation ( A - 7 )  is l inear   and  represents  a directional  derivative 

d+ = 9, dt t +xi dxi provided - d t  - - - dxi or  “&=ui.   That  is ,   the  sur- 

face 4 ( t ,   x i )  = const.  along  the  streamlines, = u Hence  the s t r eam-  

l ines  form a character is t ic   surface  for   the Eqs. (A-1) .  However we are 

more  interested  in  the  characterist ic Eq. (A-8 ) ,  this is discussed  in 

Section 11. 

d x* 
1 ui 

d 
dt i’ 
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